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Abstract. The theory of ferromagnetic resonance (FMR) and spin wave resonance (SWR) is
presented for the general case of multiphase ferromagnets. This could be a magnetic multilayer
structure or a material with mixed phases of distinct ferromagnetic materials. We discuss the
application of the theory to various systems, with a description of amorphous and nanocrystalline
materials which have not received much attention with respect to FMR and SWR. In this
respect, we treat these materials in a multiphase manner for the first time, where previous
FMR measurements on these types of material have been analysed and interpreted as single
phase ferromagnets. Although the general theory is applicable to anN phase material, we
show the detailed analysis for two phase systems, giving examples of both magnetic multilayers
and mixed double phase ferromagnets of the type for mixed nanocrystalline and amorphous
magnetic systems. The theory would also be applicable to systems where a magnetic phase
is surrounded by a non-magnetic phase, such as co-deposited systems. We also consider, for
the first time, the possibility of the existence of standing spin wave modes in mixed phase and
granular materials. The adaptability of the general theory to any form of magnetocrystalline
anisotropy and interphase interaction is also discussed.

1. Introduction

Materials of mixed magnetic phases have been of very significant scientific interest in
recent years, whether they be in the form of magnetic multilayered structures [1–4],
or randomly distributed, as in systems of amorphous and nanocrystalline mixed phase
alloys [5–8]. These materials offer a new range of magnetic properties making them
technologically very important. Such properties can be obtained by combining the differing
characteristics of various magnetic materials and/or by exploiting the varying magnetic
interphase exchange coupling interaction. In all mixed magnetic phase systems, the
exchange coupling interaction between magnetic phases plays a vital role in the ‘global’
magnetic properties exhibited by these materials. In the field of magnetic multilayers
there has been very extensive research which has shown that the magnetization vectors
between adjacent layers can couple ferromagnetically, antiferromagnetically [2–4, 9, 10] and
in some cases perpendicularly (biquadratic coupling) [11, 12]. The form of the coupling
is dependent on the interlayer material, crystallographic structure and orientation as well
as the thickness. Many authors have attributed the observed oscillatory coupling (from
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ferromagnetic to antiferromagnetic alignment), as a function of the interlayer thickness,
to an RKKY type interaction between the ferromagnetic layers through the non-magnetic
interlayer [13–15]. For the amorphous and nanocrystalline mixed systems, the exchange
interaction acting between the nanocrystallites through the intervening amorphous magnetic
phase is responsible for the very soft magnetic properties exhibited by these types of material
[7, 8].

Microwave spectroscopy, in the form of ferromagnetic resonance (FMR) and spin wave
resonance (SWR), has been demonstrated to be a very powerful probe of the magnetic
properties of many types of magnetic material. For example, we can obtain information
on the bulk magnetic properties of materials, such as the saturation magnetization,
magnetocrystalline anisotropies andg-factors. In the case of magnetic confinement effects,
we can further deduce microscopic quantities such as the exchange stiffness constant by
spin wave resonance. With careful analysis, we can study properties of grains and thin
films, where linewidth broadening can give information on interfacial roughness and grain
sizes. From the nature of spin wave resonance spectra, i.e. field position and intensities of
resonance lines, we can infer surface anisotropies of magnetic films. FMR/SWR has been
applied to the study of both magnetic multilayer [16–21] and the amorphous/nanocrystalline
alloys [22–26]. Magnetic multilayer systems provide a well defined structure which is
ideally suited to study by microwave spectroscopy and SWR in particular. The treatment of
mixed phase cluster type systems presents certain difficulties, particularly with respect to spin
wave resonance, due to the randomness of the nucleation of crystallites. However, these may
be overcome by making some simplifying assumptions in amorphous and nanocrystalline
systems, due to the manner in which the nanocrystallites form, i.e. the crystallites grow in
small grains of roughly equal size. When partially annealed, these materials consist of small
ferromagnetic crystallites embedded in a ferromagnetic amorphous matrix [5–8]. This can
also be readily applied to co-deposited alloys, where magnetic clusters are embedded in a
non-magnetic matrix, such as Co–Cu, and GMR alloys [27].

In this paper we present the theory for ferromagnetic and spin wave multiphase magnetic
materials. The theory is given for the general case of a single phase ferromagnet and
then further developed for a double magnetic phase system, with some discussion as to
the extension to anN phase system. This theory can be readily adopted for magnetic
multilayer structures and amorphous/nanocrysalline mixed phase systems. In this regard
we give the first description of amorphous/nanocrystalline materials within the FMR/SWR
framework. This is particularly important since such systems have only quite recently been
studied using ferromagnetic resonance, and in those cases where they have been studied,
the analyses are given assuming a single magnetic phase [22–24]. In another publication we
demonstrate the necessity of this approach in an experimental study of the crystallization
of FeZrBCu by ferromagnetic resonance [28]. The theory here presented has much in
common with analysis for FMR in magnetic multilayers by other authors [29–33], and
indeed this theory gives analogous results when applied to layered structures, where we
use a slightly different form of the boundary equation. The aims of this paper are to
show the extension of this theory to the general case of a mixed phase ferromagnet, and
in particular to apply it to amorphous and nanocrystalline mixed phase systems, where
we outline some of the difficulties of the application of the theory. Of considerable
importance are the changes that are undergone by such systems upon thermal annealing,
where the samples gradually crystallize and the sample transforms from a reasonably
homogeneous ferromagnetic amorphous phase through varying degrees of crystallinity,
whereby ferromagnetic crystalline grains form in a remaining amorphous matrix. Both
the crystalline grains and the amorphous phase change in magnetic properties during such
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annealing processes [5–8, 34]. We emphasize the importance of grain size and shape effects,
as well as grain boundary conditions.

2. Theory of ferromagnetic and spin wave resonance in single and multiphase
magnetic materials

In this section we shall discuss the basic theory, firstly outlining that for a single phase
ferromagnet, where we assume a homogeneous magnetization throughout the sample. Then
we shall demonstrate the setting up of the boundary conditions, which is important for
the spin wave resonance (SWR), and discuss the special case of ferromagnetic resonance
(FMR). The theory will then be extended to the case of a multiphase ferromagnet, where
we may assume that each phase has distinctly different magnetic properties, such as the
magnetocrystalline anisotropy and magnetization. The application of this theory will be
discussed for general mixed phase ferromagnets, where we discuss in detail the case of
materials where grains of a ferromagnetic material are surrounded by another ferromagnetic
material. This will apply to alloys of amorphous and nanocrystalline materials, such as the
finemet type alloys etc, which have been thermally annealed [5].

2.1. Single phase materials

As this theory has already been dealt with by other authors, we shall only give a brief
outline here, discussing the general theory of ferromagnetic and spin wave resonance and the
application of boundary conditions to obtain the allowed spin wave wavevectors necessary
for spin wave resonance.

2.1.1. General resonance equation.The ferromagnetic and spin wave resonance for a
single phase material has been treated by several authors [16–20, 29–32] with certain
variations. In the following we shall give a brief outline, where we will adopt a similar
approach to that of [35], with some adjustments where convenient. We start from the
equation of motion of the magnetization vector, which can be expressed in the form:

1

γ

∂M

∂t
=M ∧Heff . (1)

Equation (1) describes the motion or precession of the magnetization vector about that of
the effective field,Heff . This effective field has various contributions depending on the
sample (internal fields) and externally applied fields. The effective field can be written as:

Heff =H0+ h+HK +Hex −Hdem −HD. (2)

H0 is the static (externally) applied field,h the microwave (rf) field,HK represents the
anisotropy field,Hex the exchange field,Hdem the demagnetizing field resulting from
sample shape andHD is the damping field arising from relaxation effects. We can rewrite
equation (1) in the form:

1

γ

∂M

∂t
= τ +M ∧Hex −R (3)

whereM is the magnetization vector,γ the magnetogyric ratio,τ the torque introduced
by the various magnetic contributions to the effective field,Heff , (excluding the exchange
contribution, which has been left out of the torque term for purposes of clarity). The
second term represents the effect of the exchange field vector,Hex . We treat the torque and
exchange expressions explicitly, to show the spin wave term separately. The final term in
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equation (3),R, represents the relaxation term or damping vector, which will be neglected
here, as we are primarily concerned with the resonance field; this could be included for
linewidth analysis, and would take the form of the Landau–Lifshitz or Gilbert parameters,
see for example [36]. Torque is defined as:r ∧ F , the moment of the force, and can be
given in vectorial form as:

τ = eϑ 1

sinϑ

∂E

∂ϑ
− eφ ∂E

∂φ
(4)

where we are using a spherical polar coordinate system, see figure 1, whereeϑ and eφ
are the unit vector in theϑ andφ directions, respectively. At equilibrium, i.e. in the off-
resonance state, the first derivatives of the free energy with respect to the angles,ϑ and
φ, will be zero [35]. In this manner we can obtain the equilibrium orientation,ϑ0 andφ0,
of the static magnetization vector. The magnetization vector is composed of a static and a
dynamic component;M (r, t) =M0(r)+m(r, t), with the condition|M0| � |m|, where
M0 is the static (or dc) component andm the dynamic (or rf) component. At resonance, the
magnetization vector will be in motion, where the excursions from the equilibrium position
can be expressed as:

δϑ = ϑ − ϑ0 and δφ = φ − φ0. (5)

Now

sin(δϑ) ≈ δϑ = mϑ

M0
and sin(δφ) ≈ δφ = mφ

M0 sinϑ
. (6)

See figure 1 for explanation of the symbols. This gives the torque at resonance as:

τ =
{
êϑ

1

sinϑ

∂2E

∂φ∂ϑ
− êφ ∂

2E

∂ϑ2

}
mϑ

M0
+
{
êϑ

1

sinϑ

∂2E

∂ϑ2
− êφ ∂

2E

∂ϑ∂φ

}
mφ

M0 sinϑ
. (7)

The exchange field, for bulk spins, is given by:

Hex = 2A

M2
0

∇2m (8)

whereA is the exchange stiffness constant (ergs cm−1). From equations (3), (7) and (8),
we can obtain the general resonance equation as:(
ω

γ

)2

=
(

2A

M0
k2

)2

+
{

1

M0 sin2 ϑ

∂2E

∂φ2
+ 1

M0

∂2E

∂ϑ2

}
2A

M0
k2

+ 1

M2
0 sin2 ϑ

{
∂2E

∂φ2

∂2E

∂ϑ2
−
(
∂2E

∂ϑ∂φ

)2
}
. (9)

This gives the most general form of the resonance equation for both spin wave resonance
and ferromagnetic resonance, where it will be clearly noted that in the case of zero
wavevector (k = 0), one obtains the uniform precession mode (i.e. the FMR limit), and
equation (9) reduces to the well known Smit–Beljers equation [37]. For the case of spin
waves in a confined magnetic system, such as a thin film in the perpendicular orientation or
magnetic clusters, we must consider the boundary conditions to find the allowed spin wave
wavevectors,k.
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Figure 1. Spherical polar coordinate system. This shows the various components of the
magnetization vector.

2.1.2. Boundary conditions.In any system where there is a magnetic discontinuity, the
spins at a surface or interface will experience a different exchange field than those spins in
the bulk of a ferromagnet due to the change of symmetry. Therefore we must take this into
account in the equation of motion. This is given by the Rado–Weertman equation [38]:

M ∧
(

2A

M0

)
∂nM + τ surf = 0 (10)

where ∂n denotes the outward normal derivative, i.e. the derivative in the direction
perpendicular to the interface or boundary, andτ surf represents the surface or interface
torque, where the surface torque is given by [35]:

τ surf =
{
eϑ

1

sinϑ

∂2Es

∂ϑ2
− eφ ∂Es

∂ϑ∂φ

}
mφ

M0 sinϑ

+
{
eϑ

1

sinϑ

∂2Es

∂φ∂ϑ
− eϑ cosϑ

sin2 ϑ

∂Es

∂φ
− eφ ∂

2Es

∂ϑ2

}
mϑ

M0
(11)

Es represents the surface free energy density. The usual form of the surface energy is:

Es = Ks sin2 ϑ cos2 φ (12)

whereKs is the surface anisotropy.
Making the necessary derivatives ofmϑ,φ and the relevant substitutions, we can obtain

the conditions for the allowed values of the spin wave wavevectors [32, 35]:

k(p1+ p2)

(p1p2− k2)
= tan(kL) and

k(q1+ q2)

(q1q2− k2)
= tan(kL) (13)

for volume or bulk modes, while for surface modes we have:

µ(p1+ p2)

(p1p2− µ2)
= tanh(µL) and

µ(q1+ q2)

(q1q2− µ2)
= tan(µL). (14)
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In the perpendicular configuration,φ = 0, it can be shown thatq1 = p1 and q2 = p2.
The subscripts refer to interfaces 1 and 2, for the general case where the two interfaces are
non-symmetric. In this case the surface localized spin wave wavevectors areµ, where we
write k = iµ. These will have a decaying nature.

2.2. Multiphase materials

2.2.1. General resonance equation.For the case of multiphase materials, by which we
mean a material which contains more than one distinct magnetic phase, the situation is
somewhat more complex. However, we can extend the theory used for the single phase
ferromagnets to the case of multiphase samples. Such multiphase materials could be for
example magnetic multilayer systems or alloys with a mixture of more than one magnetic
phase, as is the case for amorphous and nanocrystalline materials. In this case we must set
up the equation of motion for the magnetization vector for each individual magnetic phase.
The exchange interaction between magnetic phases will be introduced into the free energy
of the system as a whole, and the effect on any spin waves set up in any confined magnetic
phase(s) will be manifest as a shift in the spin wave wavevector caused by the effect of the
mutual exchange interaction at the boundaries. The equation of motion, then, for a phase
A will be given as:

1

γA

∂MA

∂t
= τA +MA ∧Hex,A −RA (15)

which is just as given in the case of the single phase, equation (3). In this case, however,
the torque expression will differ from the single phase case in that it will contain additional
terms due to interactions with other magnetic phases. To illustrate this we shall take the
example of a material with two magnetic phases. The equation of motion for this second
phase, say B, will simply be given as in equation (15) where the A subscript will be replaced
by B. The torque expression at resonance will now read:

τA =
{
eϑ

1

sinϑA

∂2E

∂φA∂ϑA
− eφ ∂

2E

∂ϑ2
A

}
mϑA

M0A
+
{
eϑ

1

sinϑA

∂2E

∂ϑ2
A

− eφ ∂2E

∂ϑA∂φA

}
mφA

M0A sinϑA

+
{
eϑ

1

sinϑA

∂2E

∂ϑB∂φA
− eφ ∂2E

∂ϑB∂ϑA

}
mϑB

M0B

+
{
eϑ

1

sinϑA

∂2E

∂φB∂φA
− eφ ∂2E

∂φB∂ϑA

}
mφB

M0B sinϑB
. (16)

(Compare equation (7).) The corresponding torque expression for phase B will be given by
interchanging the A and B subscripts. For more phases we need to add further terms with the
appropriate form in brackets, as given above formθB andmφB . Following the manipulations
as given for a single phase, we can obtain the equations of motion in component form (these
are given in appendix A). Solving in the usual manner, we obtain the following matrix
[32]:

(i�A − RA) −(PA +DAk
2
A) −RBA −PBA

(QA +DAk
2
A) (i�A + RA) QBA R′BA

−RAB −PAB (i�B − RB) −(PB +DBk
2
B)

QAB R′AB (QB +DBk
2
B) (i�B + RB)



mϑA
mφA

mϑB

mφB

 = 0 (17)
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where the substitutions forPA, QA, etc are listed in appendix B. For non-trivial solutions
the determinant goes to zero, from which we obtain the general resonance equation:

{(i�A − RA)(i�A + RA)+ (PA +DAk
2
A)(QA +DAk

2
A)}{(i�B − RB)(i�B + RB)

+(PB +DBk
2
B)(QB +DBk

2
B)} − {(i�A − RA)QBA + (QA +DAk

2
A)RBA}

×{(i�B + RB)PAB − (PB +DBk
2
B)R

′
AB} − {(i�A − RA)R′BA

+(QA +DAk
2
A)PBA}{(QB +DBk

2
B)PAB + (i�B − RB)R′AB}

−{(PA +DAk
2
A)QBA − (i�A + RA)RBA}{(PB +DBk

2
B)QAB

−(i�B + RB)RAB} − {(PA +DAk
2
A)R

′
BA − (i�A + RA)PBA}

×{(QB +DBk
2
B)RAB + (i�B − RB)QAB} − {RBAR′BA − PBAQBA}

×{PABQAB − RABR′AB} = 0. (18)

It will be readily seen that for the case of non-interacting magnetic phases, e.g. for decou-
pled magnetic layers, equation (18) will reduce to two uncoupled resonance equations of
the form of equation (9). This method can be extended to a system ofN phases, where the
solution will be obtained from a 2N × 2N matrix.

2.2.2. Boundary conditions.In addition to accounting for the energy of interaction between
the various magnetic phases in a sample, we must also take into account the effect that the
magnetic phases will have on each other at their interfaces. This will affect the pinning
conditions for the allowed spin wave modes, where we have to introduce further interaction
terms into the boundary equations. This will produce a shift in the resonance field, due
to the effect of the changed boundary conditions, with respect to the case of an isolated
single phase sample. The number of boundary equations will depend on the sample, i.e. the
number of phases and interfaces. In the case of a magnetic multilayer system, this will be
very systematic, and well defined in a one-dimensional manner [32, 39–41]. For the case
of a mixed phase material, as for nanocrystalline systems, we must use a slightly different
approach. This will greatly depend on the nature of the sample itself.

In any case we must take the boundary conditions for each phase which can support
spin wave modes, individually. As stated, this will depend on the conditions surrounding
that particular phase. In order to continue we shall have to make some simplifying
assumptions, which will be valid for certain types of sample. We will set up the general
boundary equations, and later discuss the various physical restrictions which should be
adopted in certain cases, giving some examples. In the case of nanocrystalline systems,
it is commonly found that nanocrystals form in a surrounding ferromagnetic amorphous
matrix, after annealing at an appropriate temperature for a certain time [5, 8]. For
the finemets and other amorphous alloys the sizes of these nanocrystallites are of the
order of 10–20 nm [5], a size which may physically support standing spin wave modes.
The form of these spin waves will also depend on other factors, such as the exchange
stiffness constant and magnetization. In certain cases, the amorphous phase may not be
homogeneous, and there may be more than one distinct magnetic phase [42, 43]. Effects
such as these can produce additional resonances in the SWR/FMR spectra, cause averaging
effects in the resonance field (section 3.1) and may have significant effects on resonance
linewidths.

For purposes of simplicity, we shall consider the case of a double magnetic phase, where
one magnetic phase is surrounded by another. The resulting spectra will be an average over
the whole sample, where we assume that the grains are approximately of the same size.
The physical spectra from such a sample will show a broadening of the resonance peaks,
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which is related to the spread of grain size from the average [25]; this will also be true for
any variations of the magnetization etc. For the present we shall assume that the transverse
wavevector is zero, whereas in reality this may not be the case; this will be further discussed
later (section 3.3). The transverse direction will be defined as the directions perpendicular
to the applied magnetic field.

We consider the case where a ferromagnetic material A is surrounded by a ferromagnetic
material B. In this situation we shall consider the average grain, with two boundaries
separated by a distanceL, where, as the grain is completely enclosed in material B, the
pinning conditions at the two interfaces can be assumed to be identical. The boundary
equations can now be written in the form:

MA ∧
(

2AA
M2

0A

)
∂nMA −MA ∧

(
2AAB
M0AM0B

)
∂MB + τ int.AB = 0. (19)

This has the same basic form as the Rado–Weertman boundary equation, see equation (10),
where we have an additional term due to the magnetic exchange interaction between the
magnetic phases A and B. This term has been defined such that the interaction between
the magnetic phases is of the form of a stiffness constant,A. Subsequent treatment will be
analogous to that for the single phase. For the case of magnetic multilayers it is, in general,
necessary to set up the boundary conditions at each interface explicitly [32, 39–41]. The
static components can be expressed as:(

2AA
M0A

)
(∂nM0A)ϑ −

(
2AAB
M0B

)
(∂nM0B)ϑ + ∂Eint

∂ϑA
= 0(

2AA
M0A

)
(∂nM0A)φ −

(
2AAB
M0B

)
(∂nM0B)φ + 1

sinϑA

∂Eint

∂ϑA
= 0

(20)

where Eint is the interfacial energy. While the components of the dynamic boundary
conditions are:

∂nmϑA + AAB
AA

M0A

M0B
∂nmϑB + pmϑA + qmϑB + rmφA + smφB = 0

∂nmφA + AAB
AA

M0A

M0B
∂nmφA + rmϑA + tmϑB + umφA + vmφB = 0

(21)

where the substitutions forp, q, r, s, t, u andv are listed in appendix B. When we take the
interface energy, which has the form:

Eint = KAB
int sin2 ϑA cos2 φA (22)

we see that the termsq, s, t and v will go to zero. Furthermore, due to geometric
considerationsr also goes to zero, greatly simplifying the boundary equations. In
equation (22)KAB

int , represents the interfacial anisotropy, which is given here in uniaxial
form. Taking the appropriate derivatives and back substituting we obtain the pinning
parameters:

p = KAB
int

AA
(cos2 ϑA − sin2 ϑA) cos2 φA + AAB

AA

∂nM0B

M0B
− ∂nM0A

M0A

u = KAB
int

AA
(sin2 φA − sin2 ϑA cos2 φA)+ AAB

AA

∂nM0B

M0B
− ∂nM0A

M0A
.

(23)

In fact, it can be seen from this analysis that the boundary equations are very similar
to that for a single phase [32, 35]. The are differences however, these being that the
contributions to the pinning parameters here have additional terms relating to the coupling
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between the magnetic phases. In the case whereM0A = M0B , andAAB = AA, the sample
effectively becomes magnetically continuous, with no effective boundary. In this situation
the interface anisotropy constantKAB

int will become zero, thus the pinning parameters will
tend to zero and the boundary equations will naturally collapse.

In our case of the mixed phases, the pinning conditions will be symmetric, thus yielding
the allowed spin wave wavevectors (cf equations (13) and (14)):

2kAp

p2− k2
A

= tan(kAL) and
2kAu

u2− k2
A

= tan(kAL) (24)

for bulk modes, and

2µAp

p2− µ2
A

= tanh(µAL) and
2µAu

u2− µ2
A

= tanh(µAL) (25)

for interface localized modes.L is the average grain size. As stated, this makes the
assumption thatk, the spin wave wavevector, perpendicular to the direction of the applied
field is zero. In the case of the multilayer system, the form of the boundary equations will
be as given above, with the further addition of the outer boundaries at the sample extremes.
Also, the boundary equations may not be symmetric [32] and the equations giving the
allowed wavevectors will be as in equations (13) and (14), using pinning parameters given
in equation (23).

2.2.3. Free energy considerations.In order to use the resonance equations, we need to
obtain the expression for the free energy of the whole system. Then we have to perform
the relevant derivatives with respect toθ and φ, and substitute them into the resonance
equation. For a system ofN phases, we can represent the free energy of the whole sample
as:

E =
N∑
n=1

{
Vn[−M0nH [sinϑn sin2H cos(8H − φn)+ cosϑn cos2H ]

−2πM2
0n sin2 ϑn + EnK(ϑn, φn)] −Mn ·

∑
m

KnmMm

}
. (26)

Vn represents the relative quantities of each phase, and is dimensionless, where the following
relation holds:∑

n

Vn = 1. (27)

So Vn for each phase will give the relative volume of that phase in the sample. The first
summation, in equation (26), will be over the number of phases present. Angles withH

subscripts represent the orientation of the applied fieldH , see figure 1. The first term
in square brackets (in equation (26)) represents the Zeeman energy, the second term the
demagnetizing energy for an isotropic sample, and the third term,EnK(ϑn, φn), represents
the magnetocrystalline anisotropy energy of each phase, where different anisotropies can
be readily adopted, depending on the type of crystal [29, 30, 44]. The second summation
overm, wherem 6= n, will be over the magnetic interaction between neighbouring phases,
which will depend greatly on the nature of the sample. In the case of a multilayer system,
it will be over neighbouring or adjacent layers, while for a mixed phase sample would be
over all phases that are strictly in ‘magnetic contact’, i.e. those magnetic phases which feel
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the effect of the other magnetic phases. By way of illustration, it can be shown that the
interaction energy between phases A and B, this has the form:

EAB = −KABMA ·MB = −KABM0AM0B{sinϑA sinϑB cos(φA − φB)+ cosϑA cosϑB}
(28)

where

KAB = JAB

|M0A||M0B | .
KAB will be a measure of the strength of the exchange interaction between the magnetic
phases (andJAB the exchange energy). For the case of ferromagnetic couplingKAB will
be positive, giving parallel alignment ofMA andMB for an energy minimum. In the case
of an intervening non-magnetic material, the coupling interaction could be negative, i.e.
antiferromagnetic alignment, where an energy minimum is found whenMA andMB are
antiparallel; in this caseKAB will be negative. For the case of multilayers, an extra term
of the form−K ′AB(MAMB)

2 may be introduced to account for biquadratic coupling [12],
whereMA andMB are aligned perpendicularly for an energy minimum.

3. Applications to specific multiphase ferromagnets

The case for magnetic multilayered structures has been quite extensively discussed by
several authors. The results using the present method are in accord with those of other
authors [16–21, 29–32]. The case for nanocrystalline materials, which constitute a more
complicated magnetic multiphase system, has not received much attention with regard to
ferromagnetic and spin wave resonance. This will be addressed in section 3.3, giving a
detailed discussion of the effects of the nanocrystallized grains, where confinement effects
inside the grains may give rise to spin wave modes, and how the surrounding phase will
affect these resonances. We shall give the example of cubic grains as a simple case, applying
the boundary conditions to give the allowed values of thek vectors of the standing spin
wave modes. Then we shall discuss the modifications necessary when dealing with more
realistic cases of different shaped grains. In the following section we show the analysis for
the determination of the resonance field in the case of a general mixed phase ferromagnet,
which applies to both magnetic multilayers and general random mixed phases.

3.1. Mixed double phase ferromagnet

We now consider the case of a two phase ferromagnet. The sample will be set in the
x–y-plane, as illustrated in figure 2. We must now take the derivatives of the free energy
with respect to the angles. The first derivatives of the free energy, as given in equation (26),
with respect to the angles are set to zero, from which we obtain the equilibrium conditions,
which, for phase A, will be

H sin(8H − φA) = HKA sinφA cosφA − KAB
VA

M0B sin(φA − φB). (29)

It will be noted that we have taken the case for uniaxial magnetocrystalline anisotropy.
That for B is simply found by swapping the A and B subscripts, where the anisotropy field,
HKA, is given by:

HKA = 2Ku
A

M0A
. (30)
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Figure 2. In-plane geometry and coordinate system for a two phase magnetic system.

The second derivatives of the free energy are given in appendix C. When we take account of
the sample orientation, i.e. placing the sample in thex–y-plane, the cross derivative terms,
i.e. those with respect toθ and φ (the R terms), go to zero. This greatly simplifies the
resonance equation (18), which will now read:

{−�2
A + (PA +DAk

2
A)(QA +DAk

2
A)}{−�2

B + (PB +DBk
2
B)(QB +DBk

2
B)}

−�A�B{PBAQAB + PABQBA} + PABPBA(QA +DAk
2
A)(QB +DBk

2
B)

−QABQBA(PA +DAk
2
A)(PB +DBk

2
B)+ PABPBAQABQBA = 0. (31)

Due to the form of the free energy and the resonance equation, it is convenient to redefine
some of the parameters. This will not affect the physics of the resonance equation, and will
aid the manipulation of the equation above. We will now write:

�N = ω

γN
M0N sinϑN. (32)

Other changes will be to the parametersP , Q and R, where the denominators will no
longer have anM0N term. With a little manipulation we can gather the terms which involve
the exchange interaction constantKAB , whereP ′A = PA − PAB etc. Also we note that
PAB = PBA andQAB = QBA = KABM0AM0B and in the present geometry we can put
θA = θB = π/2, PAB = QAB cos(φA − φB). Now the resonance equation can now be
written:

{−�2
A + (PA+DAk

2
A)(QA+DAk

2
A)}{−�2

B+ (PB+DBk
2
B)(QB+DBk

2
B)}+KABM0AM0B

×{[(Q′B +DBk
2
B)+ (P ′B +DBk

2
B)][(P

′
A +DAk

2
A)(Q

′
A +DAk

2
A)−�2

A]

+[(Q′A +DAk
2
A)+ (P ′A +DAk

2
A)][(P

′
B +DBk

2
B)(Q

′
B +DBk

2
B)−�2

B ]}
+K2

ABM
2
0AM

2
0B{[(P ′A +DAk

2
A)+ (P ′B +DBk

2
B)]

×[(Q′A +DAk
2
A)+ (Q′B +DBk

2
B)] − (�A +�B)2} = 0. (33)

In the case of very strong coupling, whereKAB � 1, the final term involvingK2
AB will

dominate. In this situation we would expectφA = φB = φ. Therefore the resonance
equation will simplify to:

(�A +�B)2 = [(P ′A +DAk
2
A)+ (P ′B +DBk

2
B)][(Q

′
A +DAk

2
A)+ (Q′B +DBk

2
B)]. (34)
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This equation will be valid for the case of a magnetic bilayer and a material with two
strongly coupled magnetic phases. Equation (34) is valid for the general case of spin wave
resonance in both phases A and B. For the magnetic bilayer situation, we can now adopt
the relevant boundary conditions to obtain thek-values. The case for a mixed phase is more
problematic in that we need to define the region in which the spin wave are excited, in a
rigid manner. That is, we must define the size and properties, as well as the boundaries
for such a phase. Should we only consider the case of ferromagnetic resonance, equation
(34) would reduce to that obtained by Layadi and Artman [31]. Substituting for the various
parameters (see appendix B, equation (B1)), we find that the resonance equation yields:(
ω

γeff

)2

= {H cos(8H − φ)+Heff

K (sin2 φ − cos2 φ)+D′Ak2
A +D′Bk2

B}{H cos(8H − φ)

+4πMeff

0 −Heff

K cos2 φ +D′Ak2
A +D′Bk2

B} (35)

with equilibrium condition:

H sin(8H − φ) = Heff

K sinφ cosφ (36)

where

H
eff

K = VAHKAM0A + VBHKBM0B

VAM0A + VBM0B
(37)

is the effective anisotropy field,

M
eff

0 = VAM
2
0A + VBM2

0B

VAM0A + VBM0B
(38)

is the effective magnetization,

γeff = VAM0A + VBM0B

VAM0A/γA + VBM0B/γB
(39)

is the effective magnetogyric ratio, and

D′A =
VAM0ADA

VAM0A + VBM0B
etc (40)

is the redefined spin wave constant. Therefore, we can see that equation (35) is of the form
of a resonance equation for a single phase, with parameters as given in equations (37)–(40),
in other words, is like an average over the phases present. It should be noted that we must
treat the spin wave resonance case in each phase separately. Although the spin wave term
is present in equations (34) and (35) for both phases, we must putkB = 0 in magnetic
phase A andkA = 0 in magnetic phase B, i.e. the spin wave wavevector in phase A for
phase B is zero, and vice versa. As stated previously, for a zero coupling case the resonance
equation (33) reduces to that for isolated single phase resonances.

The variation of the effective magnetization, from equation (38), is illustrated as a
function of the content of phase A in figure 3. The value ofM0A is kept constant at
1000 G, where the figure is given for selected values ofM0B . In figure 4, we illustrate
the effect of the magnetization values on the resonance field, in which the values for the
anisotropy fields are 20 and 10 G, for phases A and B, respectively. The value of the
magnetization for phase A was kept at 1000 G while various values are shown for that
of phase B. In figure 5, the values for the magnetization of phases A and B are 1000 G
and 750 G, respectively. The value ofHKB is kept at zero, and we show the variation of
the resonance field as a function of the phase A content for values ofHKA of 200, 0 and
−200 G. We see that the effect of the uniaxial anisotropy field is fairly insignificant, this
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Figure 3. Variation of 4πMeff

0 in the strong ferromagnetic coupling limit, using equation (38),
whereM0A is kept at 1000 G, andM0B is given selected values as indicated.

Figure 4. Effect of change of magnetization on the resonance field. Here we use equation (35),
with M0A = 1000 G, for selected values ofM0B , as indicated.

is especially so in the case of amorphous/nanocrystalline materials, where the anisotropy is
generally small. We use equation (35) for these simulations. The simulations are all in the
FMR limit with strong ferromagnetic coupling, where the magnetic field applied along the
φ = 0 direction.

For the case of weak to zero exchange coupling, we expect two ferromagnetic resonance
peaks, which would correspond to those of the isolated resonance fields (these will be given
by the extreme values of the resonance field in figure 4). These result from equation (33),
which is fourth order inH , where two solutions are physically meaningful, see also [31]
and [33]. As the exchange coupling interaction increases in strength, the two resonances
will be expected to move to a common point, depending on their relative concentrations,
until they are degenerate at the full ferromagnetic coupling limit.

In a separate publication [28] we give a detailed experimental study of the system
Fe87Zr6B6Cu by ferromagnetic resonance. Here the FMR spectra have been taken at
different stages in the crystallization process, which gives rise to various magnetic phases.
These magnetic phases interact magnetically and are in good agreement with the theory
discussed in the present article.
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Figure 5. Effect of change of anisotropy field on the resonance field. Using equation (35), with
M0A = 1000 G,M0B = 750 G andHKB = 0 G. Values ofH are indicated.

For the inclusion of spin wave resonance, it is necessary to define the region in which
the spin wave modes are excited. The exchange coupling will affect the pinning parameters,
as described in section 2.2.2, thus causing a change in the spin wave wavevectors, producing
a corresponding shift in the resonance field. This has been discussed by several authors for
the case of magnetic multilayers [16–19, 32, 45, 46] using various approaches. The case for
amorphous and nanocrystalline materials is discussed in section 3.3.

3.2. Magnetic multilayers

The case for a magnetic multilayered structure can be treated in a systematic manner by
applying the boundary conditions at the interfaces of each magnetic layer. In this manner, we
can obtain the allowed conditions for spin wave resonance modes in each of the magnetic
layers as a function of the pinning parameters at each interface. It will be noted that
while the exterior boundaries will have pinning parameters analogous to those of a single
magnetic layer, the interior magnetic boundaries will have pinning parameters which contain
an additional contribution which will be dependent on the size and strength of the interlayer
magnetic coupling, as discussed previously. Such an approach can be shown to give results
which are consistent with the findings of other authors [16–18, 45, 46].

3.3. Amorphous and nanocrystalline mixed phase systems

In the as-cast state, some amorphous alloys tend to be inhomogeneous, and their resulting
magnetization can therefore be expected to be inhomogeneous. This is certainly the case
for FeZrCuB and FeZr amorphous alloys grown by melt spinning [22–24, 28, 42, 43]. It
may therefore be contended that these materials should be, strictly speaking, treated in the
multiphase manner discussed above; this will be particularly true when such materials have
been partially annealed, where two clear ferromagnetic phases are present. In the case of
very strong coupling between phases it has been shown, section 3.1, that one can adopt a
‘single phase’ stance for the case of ferromagnetic resonance (where the wavevectors will be
zero), though it must be remembered that this is essentially an averaging of the magnetism
of the phases present, in which case we need to use the parameters (36)–(39). For the case
of spin wave resonance, the situation will be a little more complex as we must consider
the possibility of further resonances in the spectra, due to a confinement effect arising from
the boundary or interfacial conditions, where we additionally need to use the spin wave
parameters, equation (40).
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In the case of partially annealed materials, a nanocrystallization takes place in which one
phase (i.e. that which crystallizes) will co-exist with the ferromagnetic amorphous phase,
where in general they have a distinct magnetic behaviour. When this phase presents two
boundaries with the other phase, that is a confined magnetic phase, in the direction of the
applied field, a standing spin wave resonance may be excited. The nature of this spin wave
resonance will depend on the properties of the two magnetic phases, the interface which
separates them (i.e. the confinement length) and the orientation of the applied magnetic field.
We may consider the case that, for example, should the spins at the interior of the enclosed
phase have a greater freedom than those at the interface, then a bulk type spin wave will
result, whereas if the interface spins have a greater freedom than those of the bulk spins
then an interface localized spin wave mode will be expected. This will depend greatly on
the exchange stiffness constants of the two materials as well as the interfacial anisotropy.

With further annealing the nature of the samples will change and it would be expected
that the dominant magnetic properties will go through an effective phase transition, from
that of the amorphous phase to that of the complete polycrystalline phase. This is clearly
observed in the case of finemets [25]. In certain materials other phases may crystallize
and new resonances may be expected to result; this is observed in FeZrCuB [28]. We can
further expect the magnetic properties of the amorphous phase(s) to alter with annealing,
as magnetic atoms are ‘removed’ to form the crystalline phase, and therefore the effective
amount of magnetic ions in the amorphous phase will be reduced [43, 48]. Such processes,
in materials like the finemets, cause an increase in the inhomogeneity of the amorphous
phase, which may also give rise to further resonances [28]. In these types of material we
are justified in using the strong coupling limit, as there is generally no intervening non-
magnetic phase, or if there are any, they are in a small enough quantity not to affect the
strong ferromagnetic interaction between magnetic phases. It may, however, be argued that
as the amorphous phase becomes depleted of magnetic ions (which inevitably occurs in the
annealing process), generally Fe, the coupling will reduce in strength. This is taken into
account in the exchange interaction, equation (28). In this case we would have recourse to
the most general form of the resonance equation (33).

Another consideration will be the assumption made about the zero transverse spin wave
wavevector. For small clusters of ferromagnetic materials, we should account for the non-
zero transversal wavevector, arising from the size of the grains. This may be expected to
have an effect on the field position of the spin wave resonances which may arise from these
phases. This will necessitate the consideration of the boundary conditions over the entire
surface of the ferromagnetic grains.

We shall consider the case of cubic crystallites of a magnetic phase, with magnetization
MA, embedded in another magnetic phase, of magnetizationMB . This is a crude
approximation of the situation described above, where magnetic crystallites are embedded in
a surrounding amorphous magnetic matrix. Figure 6 shows an illustration of this situation,
where the average crystallite has a lengthd in the directionsx, y andz. We shall consider
the applied external field as along they direction and we can assume that the transversal
components of the spin wave wavevectors are zero. The boundary equations at the interfaces
at y = 0 andy = d will be symmetric and of the form written in equation (19), with static
and dynamic components given by equations (20) and (21). Thus we can write the boundary
equations as:

at y = 0 : αAP
int + βBkA = 0 (41)

and aty = d : αA{P int coskAd + kA sinkAd} + βA{P int sinkAd − kA coskAd} = 0

(42)



10694 D S Schmool and J M Barandiarán

Figure 6. Magnetic grain, of lengthd in the y-direction, with magnetizationMA, embedded in
the matrix of a magnetic material with magnetizationMB .

where the interfacial pinning parameter will be given by:

P int = −d K
int
AB

AA
+ AAB
AA

∂nMB

M0B
− ∂nMA

M0A
. (43)

(This will be identical to the internal pinning parameter for magnetic multilayers.) Following
the usual manipulations we obtain the equation of allowedk vectors in the magnetic particle
A as:

tankAd = 2kAP int

[(P int )2− k2
A]
. (44)

This gives the expected form, which is analogous to that for a single ‘layer’, which in effect
is what we have described. The difference in this case from that of the single isolated
magnetic layer, is that there will be a term in the expression for the pinning parameter,
which depends on the magnetic coupling between the magnetic particle and the surrounding
magnetic phase. This is as expected in this situation, since the individual magnetic particle
will behave as a single body which can support spin wave resonance modes. So for the
case of very strong pinning, we can obtain Kittel type modes inside the magnetic grains.
The effect of grain size on the field positions of spin wave resonance modes is illustrated
in figure 7. Here we show a sample where the grains have a magnetization of 750 G
(surrounded by a material with a magnetization 1000 G), uniaxial anisotropy field of 20 G
andg = 2. The first five resonance modes are illustrated where (a)A = 1×10−7 erg cm−1

and (b)A = 6×10−7 erg cm−1; note the scales on the ‘resonance field’ axes. We see that for
small grain sizes the SWR modes are well separated and gradually converge to the uniform
mode position (k = 0) as the grain size increases. For small values of the exchange stiffness
constant,A, the various spin wave modes will not be distinguishable since the linewidths
of the modes will produce an overlap between adjacent spin wave modes, note scale in
figure 7(a). In this example we use the strong coupling limit. Although we have assumed
that the pinning is very strong at the grain boundaries in this example, we would expect
a similar response for other pinning strengths, where this would introduce a shift in the
resonance field positions, from those shown in figure 7, due to the differentk-values. For
the mixed phases presented by amorphous and nanocrystalline systems, we are justified in
using the strong FM coupling limit, as the two ferromagnetic phases are always in close
contact. Therefore, as the crystalline phase grows (with annealing), the amorphous phase
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Figure 7. Effect of grain size on the spin wave resonance field for the first five spin wave modes.
The grains are assumed to have strong pinning at the interfaces of the grains. These are shown
for exchange stiffness constants of (a)A = 1× 10−7 erg cm−1 and (b) 6× 10−7 erg cm−1.

loses magnetic atoms (which form the crystalline phase) and hence becomes magnetically
weaker. From equation (33), we expect that the resonance will approach the FMR (or single
phase) position for the crystalline phase. It is important to remember that as the crystallites
grow there may be an intergrain magnetic interaction, which would also tend to the FMR
mode as the intergrain separation reduces and the crystallites coalesce.

To model the change of field position of the FMR absorption peak is rather complex,
in a realistic situation, as there is more than one parameter that changes as the sample
crystallizes. If we assume a simple situation where one phase grows at the expense of the
other in a two phase system, then we must not only account for the change of the relative
volumes of the two phases, but also the changes in the magnetizations of the two phases
and the effect that this will have on the strength of the coupling constant. This is clearly
very complex, and in any analysis of experimental data of this nature must be taken into
account at each stage in the crystallization process [28].

Should there be an interaction between the magnetic particles, this can also be taken
into account by adding another magnetic interaction term into the boundary equation for the
inter-particle magnetic coupling, which can be of variable strength. This should be included
in the equation for the resonance field, equation (33). In such a case we would have to
consider the average separation between crystallites. Furthermore, this analysis would be
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the same for a material which has a magnetic phase dispersed in a non-magnetic matrix,
such as for example, Co–Cu co-deposited alloys. The spin wave modes would be described
by equation (44) where the interaction between magnetic particles is accounted for in the
pinning parameter.

So far we have only considered the situation wherek = ky , i.e where the transversal
components of the wavevectors are zero. If the magnetic particles were of an arbitrary shape
this assumption would no longer hold, as standing spin wave modes could be set up in the
x- and z-directions. In this case we must consider the wavevector in three dimensions,
where we write:

k = {〈kx〉2+ 〈ky〉2+ 〈kz〉2}1/2 (45)

where〈kx〉 represents the average value ofkx , thex-direction component of the wavevector.
So to evaluate the average components of the wavevector we have to consider each
component separately. This leads to a simple averaging over the entire grain in each
of the three coordinate directions, such that:

〈kx〉 = 1

m

{∑
m′
k2
m′

}1/2

(46)

〈ky〉 = 1

n

{∑
n′
k2
n′

}1/2

(47)

〈kz〉 = 1

p

{∑
p′
k2
p′

}1/2

(48)

wherem, n and p refer to the number of sites in each of thex-, y- and z-directions,
respectively, andm′, n′ andp′ refer to site labels. Such an averaging over the wavevectors
can be expected to cause a linewidth broadening of the resonance absorption lines. This
contribution to the linewidth can be expressed as:

1Hk = 4A

M0
k1k (49)

where1k represents the spread of values ofk. For any regular shaped grains, such as
spherical or cubic, an averaging of the wavevectors will not be expected to give a shift
from the ky-value (for the applied field along they-direction), as〈kx〉 ∼ 0 and〈kz〉 ∼ 0,
thereforek ≈ ky . There would, however, be a broadening associated with such a resonance,
which will depend on the grain size. Irregular shaped grains may be expected to give a
shift in the field position of resonances, as the transversal components ofk will no longer
average to zero. This would be strongly dependent on the shape and asymmetry of the
grains.

Another important consideration in these types of sample is the effect that a spread
of grain size will have on the linewidth. For the case of strong pinning, we expect an
additional contribution to the linewidth of the form:

1Hd = 4A

M0

n2π2

d3
1d (50)

where1d represents the spread of grain size andn is the modal number. This broadening
is linear with the spread of grain size, where the gradient is dependent on the material
constants of the sample, and falls as 1/d3 with increase of grain size for a constant value of
1d. So for a sample ofM0 = 750 G,A = 1× 10−7 erg cm−1, with grain size,d = 20 nm
and spread of grain size,1d = 2 nm, we expect a broadening of about 132 G in the
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linewidth of then = 1 spin wave resonance mode. This would also be valid for the case
of magnetic multilayers, where a spread in magnetic layer thickness will induce a linewidth
broadening, where we should replaced with the layer thicknessL, where1L would be
the rms roughness of both interfaces. This shows that interfacial roughness is an important
factor in magnetic thin films and magnetic multilayers, where we may also expect a spread
in exchange interaction across the multilayer, which in turn will cause further broadening
effects.

4. Conclusions

The theory of ferromagnetic resonance and spin wave resonance has been presented for
mixed magnetic phase materials. This theory can be adapted for any type of material and
structure. The case of multilayered magnetic structures has not been discussed since it has
been treated by other authors, where the results give resonance positions for various spin
wave resonance modes that are in good agreement with other models [16–18, 45–47]. We
find that in the ferromagnetic resonance limit our analysis shows agreement with previous
authors [31].

We discuss in detail the system of random grain distribution of one magnetic phase
in another. The nature of the morphology of the phases is very important to the nature
of the spin wave resonances which may result. Although this may present problems of
definition for the spin wave resonance, by making some simplifying assumptions the theory
can accommodate these types of material. We demonstrate the importance of grain size
and shape in the determination of the wavevector of standing spin wave resonance modes.
We also discuss the effect of grain shape and spread in average grain size on the linewidth
of the resonance lines, which also applies to interlayer roughness in the case of magnetic
multilayers.

In the case of a purely ferromagnetic resonance response, the nature of the clustering
of the magnetic phases no longer presents any difficulties, as the resonance would have a
quasi-single phase type resonance equation, which effectively averages over the magnetic
phases present in the sample. For the case of non-interacting magnetic phases the theory
will predict resonances as expected for isolated magnetic phases. In the case of intermediate
coupling it is necessary to solve the fourth-order equation inH .
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Appendix A. Equations of motion in component form for a two phase system

From equations (15) and (16), it can be shown that the equation of motion can be written
in component form as;{

iω

γA
− 1

M0A sinϑA

∂2E

∂ϑA∂φA

}
mϑA −

{
1

M0A sin2 ϑA

∂2E

∂φ2
A

+ 2AA
M0A

k2
A

}
mφA

− 1

M0B sinϑB

∂2E

∂ϑB∂φA
mϑB − 1

M0B sinϑB sinϑA

∂2E

∂φB∂φA
mφB = 0 (A1)
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1

M0A

∂2E

∂ϑ2
A

+ 2AA
M0A

k2
A

}
mϑA +

{
iω

γA
+ 1

M0A sinϑA

∂2E

∂φA∂ϑA

}
mφA

+ 1

M0B

∂2E

∂ϑA∂ϑB
mϑB + 1

M0B sinϑB

∂2E

∂ϑA∂φB
mφB = 0 (A2)

− 1

M0A sinϑA

∂2E

∂ϑA∂φB
mϑA − 1

M0A sinϑA sinϑB

∂2E

∂φA∂φB
mφA

+
{

iω

γB
− 1

M0B sinϑB

∂2E

∂ϑB∂φB

}
mϑB

−
{

1

M0B sin2 ϑB

∂2E

∂φ2
B

+ 2AB
M0Bk

2
B

}
mφB = 0 (A3)

1

M0A

∂2E

∂ϑA∂ϑB
mϑA + 1

M0A sin2 ϑA

∂2E

∂φA∂ϑB
mφA

+
{

1

M0B

∂2E

∂ϑ2
B

+ 2AB
M0B

k2
B

}
mϑB +

{
iω

γB
+ 1

M0B sinϑB

∂2E

∂φB∂ϑB

}
mφB = 0.

(A4)

Appendix B. List of substitutions

Substitutions in equations (17) and (18) are:

DN = 2AN
M0N

PNM = 1

M0N sinϑN sinϑM

∂2E

∂φN∂φM

�N = ω

γN
QNM = 1

M0N

∂2E

∂ϑN∂ϑM

PN = 1

M0N sin2 ϑN

∂2E

∂φ2
N

RNM = 1

M0N sinϑN

∂2E

∂ϑN∂φM

QN = 1

M0N

∂2E

∂ϑ2
N

R′NM =
1

M0N sinϑN

∂2E

∂ϑM∂φN

RN = 1

M0N sinϑN

∂2E

∂ϑN∂φN
. (B1)

Substitutions made in equation (21) are:

p = 1

2AA

{
∂2Eint

∂ϑ2
A

+ 2AAB
∂nM0B

M0B

}
− ∂nM0A

M0A

q = 1

2AA

M0A

M0B

∂2Eint

∂ϑA∂ϑB

r = 1

2AA

{
1

sinϑA

∂2Eint

∂ϑA∂φA
− cosϑA

sin2 ϑA

∂Eint

∂φA

}
s = 1

2AA

1

sinϑB

M0A

M0B

∂2Eint

∂φB∂ϑA

t = 1

2AA

1

sinϑA

M0A

M0B

∂2Eint

∂ϑB∂φA

u = 1

2AA

{
cosϑA
sinϑA

∂Eint

∂ϑA
+ 1

sin2 ϑA

∂2Eint

∂φ2
A

+ 2AAB
∂nM0B

M0B

}
− ∂nM0A

M0A

v = 1

2AA

1

sinϑA sinϑB

M0A

M0B

∂2Eint

∂φB∂φA
. (B2)

These are the general pinning parameters for a two phase magnetic system.
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Appendix C. Second derivatives of the free energy for a two phase system

Using the free energy given in equation (26), where the anisotropy is uniaxial and of the
form

EnK(ϑn, φn) = Ku
n sin2 ϑn cos2 φn. (C1)

Then the second derivatives with respect to the angles are found to be:

∂2E

∂ϑ2
A

= VA{M0AH [sinϑA sin2H cos(8H − φA)+ cosϑA cos2H ]

−4πM2
0A(cos2 ϑA − sin2 ϑA)+ 2Ku

A cos2 φA(cos2 ϑA − sin2 ϑA)}
+KABM0AM0B [sinϑA sinϑB cos(φA − φB) cosϑA cosϑB ] (C2)

∂2E

∂φ2
A

= VA{M0AH sinϑA sin2H cos(8H − φA)+ 2Ku
A sin2 ϑA(sin2 φA − cos2 φA)}

+KABM0AM0B sinϑA sinϑB cos(φA − φB) (C3)

∂2E

∂ϑA∂φA
= VA{M0AH cosϑA sin2H sin(8H − φA)− 4Ku

A sinϑA cosϑA sinφA cosφA}
+KABM0AM0B cosϑA sinϑB sin(φA − φB). (C4)

Those derivatives with respect toθB and φB are found by interchanging the A and B
subscripts. For the cross-derivative terms, we need only take the derivatives from the
interaction energy, given in equation (28), as other terms will vanish, thus we find:

∂2E

∂ϑA∂ϑB
= −KABM0AM0B [cosϑA cosϑB cos(φA − φB)+ sinϑA sinϑB ] = ∂2E

∂ϑB∂ϑA
(C5)

∂2E

∂φA∂φB
= −KABM0AM0B sinϑA sinϑB cos(φA − φB) = ∂2E

∂φB∂φB
(C6)

∂2E

∂ϑA∂φB
= −KABM0AM0B cosϑA sinϑB sin(φA − φB) = ∂2E

∂φB∂ϑA
(C7)

∂2E

∂ϑB∂φA
= KABM0AM0B sinϑA cosϑB sin(φA − φB) = ∂2E

∂φA∂ϑB
. (C8)
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